

Detector Support Group

Weekly Report, 2019-08-21

<u>Summary</u>

Hall A – Super BigBite Spectrometer (SBS) HCAL

• Cut and terminated 80 BNC to LEMO cables.

Hall B – Magnets

- To solve issues with the duplicate/missed timestamps for the data transfer from the FastDAQ cRIO to EPICS the LabVIEW code has been modified.
 - * Updated the library used to read FPGA.
 - Library allows the ability to output the data as an interleaved 1D array, which should be faster than the 2D array running in the previous version.
 - In the cRIO EPICS I/O Server, changed data types from Doubles/Arrays of Doubles to Singles/Array of Singles.
 - * Separated FPGA read and send to EPICS to run in two different loops.
 - With all modifications deployed new LabVIEW program in Torus FastDAQ cRIO and ran test.
 - Found no duplicate/missed timestamps.
 - Test will continue for a long run period to ensure that changes in LabVIEW code solved the issues.
- Updated Torus FastDAQ cRIO to Real-Time 2019.
 - * Installed NI software to upgrade Operating System NI Linux Real-Time in the cRIO.

Hall B – Gas Control Systems

• Updated gas control LabVIEW program from version 2018 to version 2019. Code has not been deployed, waiting until the end of the current physics run.

Hall C – CAEN HV Test Station

• Submitted requisition for the load box resistors, HV multiplexer components, and adapters (Radiall 52 pin connector to SHV connector).

Hall C – CAEN HV EPICS Test Station

- Wrote six Java scripts used to set "Vset", "Imon","Vmax", "RUp", "RDWn", and "Trip" parameters for 16 boards' channels simultaneously.
 - * Above mentioned parameters are set simultaneously for 576 channels during test.
 - * Java scripts run as part of the CSS-BOY screens, when user introduces a value for each parameter.
- Modified two Java scripts to turn on/off all 16 HV boards' channels simultaneously.
 - * Java scripts runs when user clicks on/off push button at the *CAEN-SY4527-Expert Controls* CSS-BOY screen.
 - * Not all HV boards' channels responded to on/off commands.
 - This requires that commands are set several times to set all channels on/off.

Detector Support Group Weekly Report, 2019-08-21

• Developed *CAEN-SY4527-Expert Controls* CSS-BOY screen to control all HV boards' channels simultaneously.

CAEN-SY4527 POWER SUPPLY - Expert Controls									
HV- Main Status	Select CAEN HV Slot $$								
HV Board Controls									
Turn Channels					C				
ALL ON/OFF									
All HV Boards' Channels									
VSet [V]	I Set [uA]	VMax [V]	Rup [V/s]	RDown[V/s]	Trip [s]				
1500.0	1000.0	1800.0	25.0	25.0	3.0				

• Tested 16 CAEN-A7030TN HV boards simultaneously under the following specifications:

Voltage Ramp Up/Down Test							
Mainframe Model	Trame Model SY4527 Set Voltage		1500 V				
Mainframe S/N	400	Ramp Up/Down Rate		25 V/s			
Board Models	A7030TN	Max Current Set		1000 uA			
Total Boards Tested	16	Load: 0 Ω	Vmax: 1800 V	IMon : ~ 0 uA			
Total Channels Tested		Total # Ramp Up/Down per					
	576	channel		1/1			

- ★ Found that all HV boards have CAEN software issues with the exception of HV boards in slots #5, #9 and #14.
- * CAEN software issues consists mainly in the random changes of the parameters ("Vset", "Vmax", "Iset", "VRUp", and "VRdwn") from its pre-set values.
- Generated spreadsheet with detailed results for all 16 HV boards
 - * Spreadsheet contains the summary for test performed and screenshots of all Voltage Ramp Test CSS-BOY screens and GECO2020 parameters.
 - * Screenshots for GECO2020 show initial set parameter before the test was started.

DSG R&D – cRIO Test Stands

- Began NI 9401 TTL Digital Input/Output module testing
 - * Soldered D-sub connector to be used for module test setup.
 - Debugged FPGA programming issues caused by incorrect output assignment in the module settings.
- Testing of NI-9871 RS485 Serial module in progress.
 - ★ Wired breakout board to connect the NI 9871 module to the USB-to-485 serial interface box.
 - ★ Wrote LabVIEW program to write from the serial interface box to the module and from the module to the serial interface box.
 - * Completed successfully test: read from module and write from module at 9600 Bd.

Detector Support Group

Weekly Report, 2019-08-21

DSG R&D – LV Chassis FPGA

- Investigated MicroPython and add-on package for DE0-Nano-SOC board.
 - MicroPython is an implementation of Python specifically developed for microprocessors and SoCs
 - DE0-Nano-SOC add-on adds a library for communicating with board's FPGA from SoC.
 - Debugging issues with cross-compiler required to build MicroPython for board's SoC.
- Replicated LV cRIO's excitation program (program to set all sensor voltages/currents in Python).
 - * Program runs on a desktop PC and communicates to LV Chassis via serial.
 - * Program is first step in developing excitation program for SoC.
 - * If MicroPython is usable on DE0-Nano-SOC, program will be reconfigured to read data directly from FPGA rather than through serial.
 - If MicroPython is not usable, program will be redeveloped in C since SoC has been proven to run C binaries.

Accelerator Division R&D

• Continued with the adjustments to the bonding parameters for superconducting Nb₃Sn strip resonator sample, no successful bonds yet.

DSG-RICH R&D

• Developed and debugged sbRIO FPGA code in LabVIEW to support the read-back and clearing of the temperature sensors' (Sensirion SHT85 sensors) status registers.

DSG R&D – PLC Test Station

- Setup communications between AB-L35E CompactLogic PLC and dgswin10 PC via RS232 serial protocol.
- Hooked up RTD temperature sensor.
- Wrote PLC program to read temperature values and average them together.